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Study of Controlled Cyclic Distillation: Il. Analytical
Transient Solution and Asymptotic Plate Efficiencies

HENRY H. CHIEN, JUDE T. SOMMERFELD,
VERLE N. SCHRODT, and PAUL E. PARISOT

MONSANTO COMPANY, ST. LOUIS, MISSOURI

Summary

The dynamic equations of the composition variables of a controlled cycling
distillation column are solved to obtain the transient solutions for the vapor-
flow period. These solutions are then used to establish asymptotic expres-
sions for the compositions at the pseudo-steady-state condition of the
cycling column. Analytical expressions for the asymptotic plate efliciencies
in terms of the operating conditions, equilibrium data, and local point efli-
ciencies are derived to show quantitatively the amount of improvement in
the separating ability that can be achieved in an ideal cycling column. A
method of numerical iterative solution for a nonlinear equilibrium relation-
ship is demonstrated, and a simplified graphical method for calculating
the number of stages required for a given separation is presented.

In this paper the analytical expressions describing the dynamics
of a distillation column operated in controlled cyclic fashion have
been derived. Using this relationship, it is possible to predict the
time history of the compositions at every plate, and furthermore to
obtain the asymptotic pseudo-steady-state values of the composi-
tions. The plate efficiencies of the pseudo-steady-state operation
can then be calculated as a function of the local point efficiency,
the equilibrium relationship, and the operating parameters. This
efficiency information may then be used in the design of controlled
cyclic distillation columns.

Matrix notations are, in general, employed here to make the pres-
entation more compact and the concept easier to follow for those
who are used to matrix notations.

281
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DESCRIPTION OF THE METHOD

Let the composition of the more volatile component of a binary
system on the ith stage be denoted by x;. The condenser is the nth
stage and the reboiler is the first stage. Boldface x is used to denote
the composition vector.

Let us first consider the vapor-flow period. At the beginning of
this period, the composition vector has a value x(0). A transition
matrix J(t) is defined which transforms the initial composition
vector x(0) to its value at time ¢, x(¢):

x(t) =J(£)x(0) (1)

Equation (1) is equivalent to its component form:
x(t) =Y Ju(t)x;(0)
=1

J is an n X n matrix and J(0) is an identity matrix. The form of J
is discussed in the next section. At the end of the vapor-flow period,
t =, the composition vector will be

X, = Xp(7) = Jo(7)%,(0)

where the subscript p refers to the pth cycle.

During the liquid-flow period, one again may describe the
change of the state by a transition matrix, which shall be called
the “drop matrix, D.” The drop matrix transforms the composition
vector at the beginning of the liquid-flow period, x}, to the compo-
sition vector at the end of the period, x&; i.e.,

x; = Dxy (2)

However, the compositions at the end of the liquid-flow period
are just the compositions at the beginning of the next vapor-flow
period. Using Eqs. (1) and (2), one obtains

Xp+1(0) =x5=Dx; =DJ, (7)x,(0) (3)

Using the recursion formula (3) together with (1), the compo-
sitions at any time can be calculated. As p becomes very large, Eq.
(3) approaches

xF=DJx* (4)

Here x* denotes the asymptotic pseudo-steady-state composition
vector at the end of the liquid-flow period. The pseudo-steady-
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state compositions at any time during the vapor-flow period can
be obtained using Eq. (1).

When the equilibrium relationship is nonlinear, the J matrix
will be a function of x also:

J=J(;x)

However, when the cycle time, 7, is not very large, x does not
change very much during the vapor-flow period. One may use the
average value of x or simply take x(0) in calculating J. The non-
linear cases will be discussed in greater detail later.

Equation (4) defines n equations for the n unkrown composi-
tions. The solution x* is the characteristic vector of the matrix DJ
with an eigenvalue of unity. Any multiple of the solution, x*, is
also a solution of Eq. (4). However, once one of the compositions
is fixed, say x;, the rest of the compositions will all be determined.

For Eq. (4) to yield a solution, it is necessary to have

det[DJ—1I1=0 (5)

Condition (5) may be considered as the necessary condition for
the cyclic distillation operation to have an asymptotic steady-state
value.

THE UNIQUENESS OF THE SOLUTION

The reader will find in the next section that the matrix DJ is a
so-called nonnegative matrix. Such matrices have important appli-
cations in the theory of probability, Markov processes, etc.

The theorem of Frobenius (1,2) ensures that a nonnegative matrix
has a positive characteristic root which is also the maximum among
all the roots. To that positive maximal root there corresponds a
characteristic vector with positive entries. This is the existence
theorem of a solution to Eq. (4).

In (2), page 63 of Vol. 2, it is also shown that a nonnegative matrix
cannot have two linearly independent nonnegative characteristic
vectors. This is the uniqueness theorem of a solution to Eq. (4).

DERIVATION OF THE TRANSITION MATRIX
In our derivation we shall use the approach of immediately
making simplifying assumptions and to provide the very specific
derivation which hopefully will be easier to follow. Later these
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assumptions will be removed and the steps of the derivation for
more general cases will either be given in greater detail or the
possibility of derivation merely indicated.

Consider the case where yf = kix; and the ks are constants;
however, every plate has its own value of k;.

The column during the vapor-flow period can be described by
the following differential equations:

Reboiler: ‘ﬂ;;x—‘) =V (6)
dx; _ -

Tray: H; i =V + Vo i=2,...,n—1 (7)

Condenser: % = Vp_1tn1 (8)

Assume here that the local Murphree efficiencies for all of the
stages are 100%, and assume further that

Vi=Vforalli=1], ... ,n—1
H,=Hforalli=2,...,n—1
Then
L) i, ©)
dx;
d—z = _kfxi + ki_lxi_l 1= 2, N 1 (10)
Ule) _ ik, (a1

after the dimensionless time, § = Vt/H, is introduced.

The assumption that all V;’s and all H/’s are constant and iden-
tical except H, and H, is not at all necessary. Variations in the V,’s
can easily be absorbed in the k;’s and variations in H; merely intro-
duce multipliers to the off-diagonal terms of the J matrix.

Consider the reboiler. Since H, = H} — Vt = H} — H§, then

d(H,x,) dx,

70—=H1 'ae——Hxl (12)
Therefore, combining Eqs. (9) and (12), one has
H1 dx,

H do = (1~ ko (13)
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The solution to Eq. (13) is

k1~ H k1—1
x, = x} (Z") =x9 (1 —m 0) (14)

Usually, HY, the initial reboiler holdup, is very large in com-
parison with the tray holdup, H. The solution may then be ex-
panded into a series.

xl=x‘,’[l—( 1)( I(Z‘O’>+ )]

~x [1+ (1= k) H“]—x,(1+30) (15)

Now consider the plates. Let us define a vector

X2

"
Il

Xp—1

to be the plate-composition vector. Then Eq. (10) may be written

d _ -
Bx5= Ax+b (16)
where the elements of the A matrix, a;;, are
Ay = —kis Qi1 = ky i=1,...,n—2
All the other elements are zero. The b vector has b, = ki, b; =0,

i=2,...,n—2.
For n =35, or a three-plate column, Eq. (16) is

d X —k, 0 0 [x. kyx,
% X3 | = k2 - k3 0 X3 -+ 0 } ( 17)
X4 0 k3 _k4 X4 0

One may solve Eq. (16) by the Laplace transform method. Let
z(p) = L[x(9)] and b’ = L[b]
Equation (16) then becomes, after transformation,

pzi—%(0)=Az+b’
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or 7= (pI — A)"[(0) + b'] (18)

Again, take (17) as an example:

2y 1 (p+ks)(p+ k) 0 0
wl=3c| kG+k) Grk)p+k) 0
24 kok, ks(f’ + k») (p+ky)

x,(0) kiz,
{xg(())}-i-l: 0 } (19)
x4(0) 0

det = (p+ ky)(p + k3) (p + ky)

After inverting Eq. (18) and using Eq. (15), the solution is in the
form

where

xi(e):Ejnxl(O) i=2,...,n

1=1
The general form of j; is shown in Table 1.

TABLE 1
J Matrix for yf = kix;

Jun=1+860 jy=e*"1=2 ... ,n—-1
H}

=,
-1 ! et dr S -k

D oretl | Dok
TOUCETL =k S ST -k

l i=2 i=2

= (1] k..)[z _J_JM e lme2 1o
II. k= k)

J=’—’1—';— :jn_..m dh

Jon = % ) :’j,,_,.,,,m dr

Jm=0forallm > [

1 {
Note: ‘H, (ki—k) = H (k,— k)
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TABLE 2
J Matrix for k;=k; =k

j,1=1+[30,j”=e""”;l=2, . ,n—l
=12
nn H‘V
Ju =k [_1_ <J'0 ek dr + b f(,J’T N-Ze=kh g\ dT)]
=21\, 0o
Fim =k 0 )’0"’"6""";l=2, ...n—1lm=2,...,1-1
—m)!

. _Hk
Jam = _IZ J;) .]n»!.m(}\) dx
For an infinite reboiler, 8 = 0, and using the formula

6 1 m 1 m—i
f Fitg-kr dp = mi —(e""”z mi [/} .)

o km+l = (Tll — 1)' kiﬂ

we have

-2 l
Jn=1=e" 3~ (ko)"
s=08:

E:

Ju=

[ro-5 - s, G02))

$=0 i=0

=

n

Consider the condenser:

8
ann: H;}xﬁ'}“ H f k,,_lxn_l(h) d)\
0

6 n—1
= 13+ H [ Ky (S juesa031) dn (20)
=1

Table 2 gives the J matrix when all the k;’s are equal. Table 3 shows
the J matrix when the V;’s and H/'s are not equal. The derivation
of these cases will not be shown, because it involves only minor
changes from the derivation of the J matrix of Table 1. It is to be
remembered that, except for H, and H,, all H;’s are assumed to be
constant here during the vapor-flow period.

Consider the case where y = kix; + b;. We have always assumed
the k;'s are constants during one cycle. Although the k;’s are allowed
to differ from plate to plate, it is still better to use yf = kx; + b; as
the equilibrium relationship for obvious reasons. Using such a rela-
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TABLE 3
J Matrix for H; # H; # H, V, # V;

L tViki
ot — =
H i

i

Vit
Ju=1+(1-k) H—lo= 1+ 8%, Jn=expl—qt)

. _H;
=,
11 "< —ayt - —ap
J'H:%:(Q‘R)Uz,eq}d‘r +bajj’z,e’d)\d‘r]
0 J=2 il;!, (gi—qy) 0’0 =2 zI;Iz, (q:—qy)

H, /= e~

jlm:—E (H qi) z ;

i=m

H,. "
jn.m = HL"‘ Qn—l [“ Jn—l.m()‘) dA

Note: B* has dimensions of (1/time)

tionship, k; actually approximates the local slope of the equilibrium
line. Later, when we demonstrate the nonlinear cases, it will be
shown that this approximation converges faster in the iterations.
The accuracy is also better and the range of cycle times can also
be larger.

Equations (6), (7), and (8) still apply. The solution (1) becomes

x(t) = J(t)x(0) + M(¢)B (21)
Equation (4) then becomes
xt = D(Jx- + MB) (22)
or
x = (I—-DJ)"'DMB (23)

Here, because of the nonhomogeneity of the equations, the solu-
tion is no longer a characteristic root. To establish the existence
and uniqueness of a positive solution is very difficult. We shall
simply assume that a positive solution exists. Although Eq. (23) is
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quite different from Eq. (4), the J and D matrices are still the same.
The reader must realize that the numerical values of the k;’s used
in J are different from those of the previous case. We shall define

M and B below.

The equation for the reboiler is

H;dx, _

H%— (1—ky)x,— b,

the solution to which is

_ B b, El-kl—l b,
xl‘("? 1—k1><H9) eys

~ by Ho

zx?[l—(l—(—b‘—>(kl—l)ﬁ?9

1—ky)xf
= x{(1+ B6)

For the plates Eq. (16) becomes

%Q=Ai+5+ﬁ

where
bl - bz
bz - b:s
B= '
bn—z - bn—l

For n =5, or a three-plate column, the equation is

x2 - k2 0 0 x2 klxl
X3 | = k2 _k3 0 X3 + O +
X4 0 k3 _k4 X4 0

Equation (18) then becomes

i= (pI— A)~ [,zm) + B +lp/§]

|+

b,

l_k1

]

bl—bz
bg_’bg
bg_b4

(24)

(25)

(26)
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The general forms of M and B are given in Table 4.
For the condenser,

Hx, = Hf (kn-1%n—1 + by—y) d\ + Hix) (27)
The reader may have noted that, except for the first column,
My = f: Jum dT form#1
By redefining the quantity 8 in Eq. (25), it is possible to make

M=f09]d7

But it turns out that the resulting expression is much more compli-
cated.

Given the J and M matrices, the compositions of the liquid on
every stage at any time during the vapor- -flow penod are completely
defined. The assumption that the k;’s and b;’s are constants (but
not necessarily equal) is valid as long as the time 7 is not very large,
i.e., the compositions do not change drastically.

In the following section the transition matrix D for the liquid-
flow period is derived.

TABLE 4
General Forms of the M Matrix and B Vector

B, =0, Bi=biy—byi=2,...,n—1
Bn=bn—l o
M”=0, M,]=j _"’d'r l——?.,...,n—l
0
el !
-1 “’\"’Td
M,,,,=(H k,-)lij Z —6—7];1=2, ...n—1,m=2,....,n—1
o 0 j=m .H’(k"_kl)
M,y=01l=1,...,n
Mnn=ﬁf
H,

L n—1
Hkn—l s e_k’)\
an =TH'[J ,-l=—,l,, ki |:Z "__l——_':l d}\ dT
0’0 =m Hv (kz - kJ)

i=m
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THE D DROP MATRIX

Having derived the J and M matrices, we need only to find D to
solve Eq. (4) [or Eq. (23) for y* = kx + b]. Unlike matrix J, which is
a function of time, we shall only attempt to relate the composition
vector at the end of the liquid-flow period to the composition vector
at the beginning of the liquid-flow period. It is assumed that no
mass transfer occurs during the liquid-flow period, so the D matrix
can be obtained simply by considering the plate-to-plate material
balance at the end of the liquid-flow period. Let us define ¢ to be
the fraction of the equivalent tray holdup dropped during the
liquid-flow period from the condenser. We shall again, for sim-
plicity, assume that all tray holdups are equal.

The matrix D is defined by

xt = Dx" (28)

We shall demonstrate the case when 0 < ¢ < 1; the general form
of D may be found in Table 5.

H oH

xk= LV + xy
1 H,+ ¢H 1 H,+ ¢H 2
xf = (1— ¢)xf + dxli, i=2,...,n—1
xk=x}
TABLE 5
General Form of the D Matrix
FN = [¢]
H,
Dy=———"—
H,+ FN(H)
H
Dy=——m————1=2,... ,FN+1
"7 H,+ FN(H)
Di.FN+1=FN+1_¢}
i=2,...,n—FN—1
Dirysivi=¢ — FN
D,,=1i=n—FN,...,n

All others are zero.
Note: [¢] is the largest integer less than or equal to ¢
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Again it is to be emphasized that the assumption of identical tray
holdups is not at all necessary. However, if they are not all the
same, another set of total material-balance equations must be
solved for all the ¢;’s, ¢; being the fraction of the ith tray holdup
dropped to the (i — 1)th tray.

EXAMPLE

In this section a sample calculation will be given for a three-tray
rectification still. The still-pot size is assumed to be infinite, and
all k/’s are assumed to be equal.

Using Table 2 the J matrix is as follows:

B 1 0
1 — e-—kﬂ e—lcﬂ
1—e*(ko+1) koe~*e
202 202
J=1|1—e*(ko+1) __kTO e k20 ekt
H ko4 K0 e H [_ k26 ko
H, {kﬂ +e 1+ 5 ¢ H, 5 ¢
| —ol—ewae+ DI} +1-eoiko 1)}]
0 0 0
0 0 0
e k8 0 0
k%‘ko e—kﬂ 0
0
Hp—eroko+1)] B a-ew L) @9
5 5 SJ
For 0 = ¢ = 1, the D matrix is
1 0 0 0 0
0 1—-¢ ¢ 0 0
D=|0 0 1-¢ ¢ O (30)
0 0 0 1—¢ ¢
0 0 0 0 1

Let ¢ =1 and using y® = kx as the equilibrium relationship, Eq.
(4) becomes
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( 0 0
l1—e*(A+1) Ae™r—1
A2 A2
— p—A — = p—A AN
1—e*A+1) 5 € 5 €
H AN o HII N
I, [A—i—e l+2 e Hs[ ) eM+1
—2[l—e‘*()\+1)]] —e"‘()\—i-l)]
H A Mo H_M
Hs[)\—i-e l+2e Hs[ 26 +1
i —2[1—e*\+ l)]] —eMA+ 1)]
0 0 0
e 0 0
Aer —1 e} 0
H . _ . H _ _ H x=0 (31
i [1—e*r+ 1] 5(1 e —1 H. X (31)
H_ R H3
5[1 e *A+1)] H, (1—e™) . IJ

The solution for total reflux after simplification may be written

xs=[er(A—1) + 1]x,
xi=[erer—AN)(A—1) + 1]x,

xf = [e" (e“ + %l - 2)\6'\) (A—=1)+ 1] (32)
xk = xf
where A = k(V7/H). For total reflux
Vr=¢H (33)

and since ¢ =1 in this case, the \’s in Eq. (32) are equal to k’s.
When the column is operated at finite reflux with feed to the still
pot, or

Vr
"o ®

then Eq. (32) is no longer valid; the correct solution will be shown
in a later section.
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Since ¢ = 1, this implies that

xy = xj
Xy = x5

) =oh=xt

The last relation shows that the condenser composition at the be-
ginning of the vapor-flow period is the same as at the end of the
vapor-flow period. This is one of the characteristics of a pseudo-
steady-state operation.

The composition x; may be calculated in the following way:

Xy = 2 Jenin = (1 —e™)x, + e7*[e"(k — 1) + 1lx; = kx,

m=1

It is rather interesting to observe that the composition of the first
plate above the still pot at the end of the vapor-flow period is the
same as the composition obtained in the conventional column. This
is equivalent to stating that the still-pot efficiency in a cycling col-
umn is identical to that for the still pot of a conventionally operated
column. We shall explore the significance of theoretical efficiencies
further in a later section. The derivation of x* for columns of larger
size or for a more general situation (e.g., k;’s are not identical) is
quite straightforward, although the algebraic manipulations to sim-
plity the final form of the solution become rather involved. It is
easier to use Eq. (4) as it is and solve the matrix equation with the
numerical values of the constants inscrted. As the size of the matrix
gets larger, the problem may have to be solved on a computer.

When ¢ =1 in a cycling column operated at total reflux, Eq.
(32) not only applies for the three-plate column, but is valid regard-
less of the total number of plates in the column. In fact, for 0 < ¢
< 1 at total reflux operation, the compositions of any plate can be
shown to be independent of the total number of plates in the col-
umn. An explanation of this phenomenon is discussed in another

paper.

THE TRANSITION MATRIX WHEN THE LOCAL PLATE
EFFICIENCY IS NOT UNITY

In all the preceding sections the local Murphree (or point) effi-
ciency has always been assumed to be equal to unity. The purpose
of such an assumption was to simplify the algebra and to concen-
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trate on the concept of the approach. It certainly would be very
limited in application if this assumption could not be relaxed. The
derivation of the J matrix becomes very long, tedious, and almost
intractable. It was quite a surprise when the result turned out to
be so compact. The reason for all the complexity in derivation is
that now the rate of change of the composition of the ith plate de-
pends not only on y; and y;_,, butalsoon all y,, m=1, . . . ,i.

In the following, only the differential equations of the tray com-
position variables are presented. The solution of the differential
equation again is listed in a table.

Assume first that all the plates have the same point efficiency E
and that the still pot has an efficiency of unity. The point efficiency
E is defined as usual to be

Yi — Yi—
E==—— 34
Y& = Yi-r (34)
which, after rearranging, gives
yi=Eyi + (1 = E)yi (35)

Writing out all the y;’s, we have

Y1 = kix,

ys = Ekyx, + (1 — E)y, = Ekox, + (1 — E)k,x,

ys = Ekyx; + (1 — E)Ekyx, + (1 — E)2k,x,

ys = Ekyx, + (1 — E)Ekyxs + (1 — E)2Ek,x, + (1 — E)3kx,
: (36)

{
w=E Y kxi(1-E)~+ (1-E)"kx,
=2

We shall consider the equations of the plates, since the equations
for the still pot and the condenser are the same as before:

ccilxel =y, — Y2 = kxy — Ekyx, — (1 — E)kyx,
= —Ek2x2 + Eklxl
dx3 Ek3x3 E2k2x2 + E(l_ E)klxl (37)

de
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a9 (I_Zl {kx,[(1 - E)™7' = (1— E)™]} — ka:>
) + (1 —E)*kxE  (37)
=E [(1 - E),—2k1x1 - k,xl + I_E] kix,-(l - E)l—i_lE]

Equation (16) is

% =Ax+b (16)
where A and b are given by
a; = —Eki
ay=(1—E)7E?k;,;, forallj<i;i=2,...,n—2(38)
bi = Ek]xl(l - E)i—l
In their full form,
i —Ek, 0 0 0 0 ]
Ezkg _Ek3 0 0 0
(1 - E)E2k2 E2k3 _—Ek4 0
A= . . . .
L (1 - E)"_4E2k2 (]. - E)n—5E2k3 e e _Ekn_] i
i Ekx,
E(l - E)klx[
Ee .
LE(1 — E)"3kx,

Note again that A is a (n — 2) X (n — 2) matrix and that X is the com-
position vector of the trays, the total of which is n — 2.

The transition matrix J(8) of the vapor cycle may be obtained
from the solution of the above differential equations; it is shown
in Table 4.

It is to be noted that the definition of j,,, is
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-1
L e Bk [Ek; + (1 — E;)Ek;]
jim = EiEnkn z i=ris1 (39)
I1. (Ek — Ek)

i=m

j=m

for a system where the individual Murphree efficiencies of each
plate are not the same. The above solution is obtained simply by
carrying the subscript i for the E’s in the derivation. The rest of
the terms of the J matrix may be obtained in similar fashion.

We did not include a table for the J matrix with unequal E/’s,
because the individual E/’s are rarely known. However, it is to be
pointed out that the assumption of equal E’s for the derivation of
J (Table 6) is not necessary.

When k; = k; = k the j;,, assumes the form

. . . —m+t (EZk)i—Z(l —_ E)I*m+101f—l(l —_m— 1)!
Jim = kE®e™5 T=—mFI=DIG=DIG =]

i=2

(40)

TABLE 6
The J Matrix when E < 1

0
n

jll = 19jll = e_Ek'ﬂ(l <l< n)vjnn =F
n

1 e ERf ﬁ [k;— (1 — E)k)]

Jim= Eky — sl<l<nl<m<l

J=m H9 (kl_ kJ)

i=m

UL = e-Eoy k)] H [k, — (1— E)k]

Jn=h T
= I (ki— k)
i=2
n—1
2 [ —emEh0) [k [ki— (1 - E)k)]
j”ﬂl = g km 2 n—1 i=l"11
" J=m H s (ki — k)
i=m
. n—1
2L e — D) JERY] [ (ki — (1 — E)kj]
Jm = g k; {9 + 2 — L!
" o H. (ki— k;)
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NONLINEAR EQUILIBRIUM RELATIONSHIP

There is a point reached at which derivation of analytical rela-
tionships become completely intractable or impossible. A change
in philosophy of investigation is clearly indicated. This point is
reached for controlled cycling when one attempts to handle non-
linear equilibrium relationships. When the equilibrium relation-
ship is nonlinear, the k; in yf = ka; (or y? = kix; + by is a function
of x;. For example, in the case of a constant relative volatility,

Y=
1+ (a - 1)xi
or
41

k=TT a=TDx,

(41)

Although the assumption that k; remains constant during the vapor-
flow period is still a good approximation, to estimate the correct
ks in J in the solution at the pseudo-steady-state compositions no
doubt requires an iterative procedure. Of course, one could also
use the very basic recursion equation (3), in which k;’s may be cal-
culated using the initial value of x at the beginning of the vapor-
flow period, and recalculate the k;’s at every new cycle until pseudo
steady state has been reached. The number of cycles or, equiva-
lently, the number of times a new J matrix has to be evaluated will
depend upon the initial composition vector and the total number
of plates in the column. Usually the iterative method using the
asymptotic equation (4) is more efficient, in spite of the fact that the
recursion formula does not require iteration, provided, of course,
the iterative procedure converges.

The iterative procedure is first to guess a set of k;’s and to calcu-
late the composition vector. Next a new set of ks are computed
using the composition vector just obtained, and a new composition
vector is calculated. The same procedure is repeated until the com-
positions do not change.

A digital program was written to solve iteratively Eq. (4) [or Eq.
(23) in cases where y? = ki, + b; is assumed] on an IBM 704 for a
nonlinear equilibrium relationship. In the early stages of the work
it was found that the iteration diverges when the size of the x is
greater than 5. It was determined later that the trouble results from
the roundoff error, a problem that must be quite familiar to all
digital-computer users.
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The difficulty was traced back to two terms.

LT (k= k)

i=m

Since k; is not much different from k;, the product of the differences
soon becomes very very small when ! — m is large; e.g., when ! — m
is 4 and k; — k; is about 1072, the product is about 107,

vy

k)

9 i e—k
) Jl:!" I_Ia (kl_ k])

Since k; is not much different from kj,,, all the ¢7*# have about the
same magnitude. The terms under the summation have both posi-
tive and negative values, which, together with the reason men-
tioned in 1, causes very serious roundoff errors when n > 5.

After a triple-precision arithmetic routine was used to compute

ek

{
2 k=)

the convergence of the iterative procedure was usually very fast.
It required approximately ¥ minute to obtain an iterative solution
for an eight-plate column (or 10 X 10 matrix), although the total
number of iterations obviously depends upon the initial k;’s
guessed. Since ¢ =1 is of the greatest interest (it will be shown
later to be the most efficient mode of controlled cyclic operation),
the following cases are cited as examples of the total number of
iterations required for an accuracy of 10~ in the compositions. The
initial k;’s are computed using compositions corresponding to con-
ventional column operation. Total reflux is assumed (¢ = V7/H) and
a constant relative volatility of = 1.2 is used. ks are computed
using the average composition of x} and x} as the base composition,

TABLE 7
Total Number of Iterations

n yf = ki yf =kx+ b,

10 4
13 4

[ B SR
<

—
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Table 7. When yf = kx; + b; is used, we choose

_ (dy®\ _ a
k= (G )= [T (a— ] (42)
b — ala—1)x? (43)

i []. + (a - 1)x,~]2

As the value of ¢ becomes greater than unity, the solution oscil-
lates very badly when using the first form for equilibrium relation-
ships. The total number of iterations goes up to 30 or even 40.
However, when using the second relationship (yf = kx; + b;) the
solution converges very rapidly (three or four iterations), although
the program must compute the M matrix in addition to the original
J matrix. The advantage of using the second relationship when ¢
is large is obvious, since k; is apt to be more nearly constant as the
composition changes during the vapor-flow period are considerably
larger. Tables 8 and 9 each contain a typical solution for a three-
plate column using methods 1 and 2, respectively. Figure 1 shows
the compositions as a function of ¢.

When 0 < ¢ < 1, and the column is operating at total reflux, the

10 T T T T T T

8 Plate Column
x=0.5
06 —yi.'ki"i
easanens ¥i* = ki + by

0.5 | | I | | I

FIG. 1. x}, and x} as a function of fraction of a plate holdup dropped (¢).
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TABLE 8
Typical Entries for a Three-Plate Column (yf = kxy, a =1.2, ¢ = 1.0)

J Matrix
1 0 0 0 0
0.66849 0.34134 0 0 0
0.29740 0.36955 0.34630 0 0

0.09565 0.19732  0.36977  0.35109 0
0.00294 0.00918 0.02839 0.06489 0.9

Solution
x} 0.5 0.61876 0.69707 0.76732 0.76732
xy 0.5 0.54545 0.61876 0.69707 0.76732
TABLE 9

Typical Entries for a Three-Plate Column (yf = kx; + by, a = 1.2, ¢ = 1.0)

J Matrix
1 0 0 0 0
0.63687 0.38198 0 0 0
0.26011 0.37244 0.39207 0 0
0.07505 0.17654 0.37155 0.04162 0
0.00197 0.00690 0.02364 0.05984 0.9
M Matrix
0 0 0 0 0
0 0.64218 0 0 0
0 0.26228 0.64928 0 0
0 0.07568 0.25912 0.65594 0
0 0.00199 0.00916 0.03441 0.1
Solution
x¥ 0.5 0.62104 0.69979 0.76945 0.76945
xf 0.5 0.54545 0.62104 0.69979 0.76945

compositions x; are not a function of the total number of plates in
the column. Figure 2 shows the relation between x; and ¢. Here a
is again chosen to be 1.2 and an infinite still pot and total reflux
have been assumed.

At total reflux one may define the effective plate efficiency in the
following way:

Yi,, — Yi1,,

IE E—— (44)

E,,

Since Vry, = ¢Hxl,, forO0=s¢=<1 (45)
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10

x =05
a=12

0.5
0

[
FIG. 2. Compositions x{ as a function of fraction of a plate holdup

dropped (¢).
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and ¢ = V7/H for total reflux, we have
_ afy —af

Bt = Rl =

Figure 3 shows the E, versus plate number using ¢ as a param-
eter. Since ¢ < 1 in this plot, the E, is not a function of the total
number of plates in the column (which follows from the conclusion
regarding the independence of compositions on the number of
plates for ¢ < 1). However, as ¢ becomes greater than 1, Eq. (46)
is no longer true, even at total reflux. We have plotted E, versus
¢ (1 < ¢ < 3) in Fig. 4, where E, is defined by Eq. (44). Since y;-,,,
can be greater than yf (7) for large ¢, the efficiencies of the second
and third plates have singular points at which E,; and E,4 jump
from 40 to —. Ey4, or the efliciency of the first plate, does not ex-
hibit such behavior, because y5 (7) is always greater than y,, which
is assumed to be a constant. Figure 5 is rather misleading, because
it shows that the efficiency for a given plate increases very rapidly
with ¢ (for ¢ greater than 1 but less than that value corresponding
to the point at which the efficiency becomes negative); yet the
composition x! decreases as ¢ exceeds unity. Actually, x5, the
average over the whole vapor-flow period, indeed increases when
¢ increases; nevertheless, it is the xf which is more significant to
the separation achieved. Therefore, it is more realistic and inform-
ative to plot E, versus ¢ using Eq. (46) as the definition of E,.

This is to extend the definition of E;for0 = ¢ = 1 to all ¢ = 0
the plot is shown in Fig. 5.

As ¢ increases above unity, as shown in Fig. 4 for a three-plate

(46)

20 T T T T T
$=10
$=0.8

IR =
&=056
$=0.4
100 | I | | — 1 ]

2 4 [ 8

Plate Number {Including Pot)
FIG. 3. Effective plate efficiency (E,) as a function of plate number; a = 1.2.
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EO
o
T

1

2

4

8

Singuiar Point:

Singutar Point
for Plate 3 for Piate 2 _\

-10 L
1

FIG. 4. Effective plate efficiency (Ey) as a function of fraction of a plate
holdup dropped (¢).
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250 T

3 Plate Column

] ]
1.0 2.0 3.0

é
FIG. . Difficulty in the definition of E, when ¢ > L.

column, the top plate efficiency also increases. However, the over-
all column or efficiency decreases, because all the other plate effi-
ciencies drop significantly. These phenomena will also be ex-
plained in another paper.

CONTINUOUS OPERATION

Most of the examples shown in the preceding sections have
assumed total reflux to simplify the computation. We are to demon-
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strate in the following the applicability of this matrix method to
cases where one does not have total reflux Vr > ¢H.

Now the compositions in the column become a function of the
total number of stages. For example, Eq. (32), which is valid for
any size of the column at total reflux, now changes to the following
set of equations:

One-plate column:

A—0
Lo |-
& [eﬂ—(l—a) 1]"’

Two plates:

X% = [e-% — A—O}))—(f)— xe ) 1] %
P TCI
Three plates:
= e —({1-9 f:(—kx_eﬁ))z —R)e ] " 1: %
%= [ T e e+
o e T ae e+

¢ is assumed to be unity in all these derivations; hence
xy = xk, i>2
x¥ can be recovered from

xy = (l—e)x, + e *x}

Equations for the efficiencies which may be derived without the
assumption of total reflux will remain the same. Nonlinear con-
tinuous cases have also been tested on the IBM 704. The results
indicate that the matrix-iterative method, as described in detail
previously, works as well for the continuous cases. However,
roundoff error becomes more serious, especially if the total number
of trays is large. The reasons are not only those mentioned before,
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but also because of the fact that when the total number of plates
increases, the differences between the lower plate compositions
(or equivalently the k/s) get smaller and smaller.

Table 10 contains the results of a three-plate column with a = 1.2
and Table 11 gives the results of an eight-plate column.

TABLE 10
Continuous Operation
(n=5a=12;x,=0.5; ¢ =1.0)

Vr

H i xf x} E; k;

1.1 1 0.5 0.5 1.0 0.9917
2 0.5813 0.5275 1.798 0.9724
3 0.6495 0.5813 2.026 0.9514
4 0.7244 0.6495 2.034 0.9276
5 0.7244 0.7244

1.5 1 0.5 0.5 1.0 0.9917
2 0.5177 0.5040 2.300 0.9878
3 0.5515 0.5177 2.696 0.9794
4 0.6284 0.5515 2.708 0.9601
5 0.6284 0.6284

2.0 1 0.5 0.5 1.0 0.9917
2 0.5035 0.5005 3.160 0.9910
3 0.5186 0.5035 3.816 0.9878
4 0.5904 0.5186 3.844 0.9724
5 0.5904 0.5904

TABLE 11

Continuous Operation
(n=10; a=1.2; x, =0.5; Vi/H = 1.1, ¢ = 1.0)

i xf x} E, k;
1 0.5 0.5 1.0 0.9917
2 0.5417 0.5141 1.805 0.9818
3 0.5775 0.5417 2.050 0.9706
4 0.6189 0.5775 2.074 0.9572
5 0.6644 0.6189 2.057 0.9426
6 0.7128 0.6644 2.034 0.9271
7 0.7625 0.7128 2.010 0.9113
8 0.8120 0.7625 1.987 0.8957
9 0.8594 0.8120 1.965 0.8809

10 0.8594 0.8594
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THEORETICAL PLATE EFFICIENCY OF A CONTROLLED
CYCLIC DISTILLATION COLUMN

Having derived expressions for pseudo-steady-state composi-
tions in controlled cyclic distillation, we shall attempt to calculate
individual plate efficiencies, which are defined by

Yi, — Yi-1.,,
E _— av av
YTy (1) ~ Yictm
The efficiency of the first plate, Ey», when the still pot is infinite
in size, is very easy to derive. In fact, one does not need to know
exactly the expression for the composition of the first plate. As de-
fined earlier,

(47)

y.=Eys + (1 - E)y,
ys = kyx, = kz(jzlxtlj + joox?)

Substituting for jg; and js, from Table 6, one has
ye = k(1 — e Bhab) g, + kyeFhaoyd
The average value of y, is

_lf do= (k. —k )£+
Yo, =7 . Y2 = (kpx3 1% * Y

y; (T) = (kzxg - k1x1) e~ + k,xl
Recognizing that y, = k;x,, one has

EAz
g, =t (48)
2

where

=k

Note that the derivation does not involve ¢; hence Eq. (48) is valid
for any ¢. This is due to the fact that y, is assumed constant regard-
less of the value of ¢. All the other plates do not have this property,
because y;-, (i > 2) is strongly dependent upon the value of ¢.
The same method may be used sequentially to obtain the effi-
ciencies for the other plates of the column, but the procedure soon
becomes too complicated. However, as the plate number increases
the efficiency rapidly approaches some asymptotic value, which is
a function of the various operating parameters of the column. We



14:51 25 January 2011

Downl oaded At:

CONTROLLED CYCLIC DISTILLATION: 1I. ANALYTICAL TRANSIENT SOLUTION 309

shall first derive the expression for the asymptotic efficiency, as-
suming ¢ to be unity and the local (or point) efficiency to be 100%,
to demonstrate the method. Cases wherein ¢ is not unity and E
is not 100% will be derived later.

Let us assume the following:

l.y*=kx+bforall x, < x < x,

2. ¢=1.

3. E=1.
Since ¢ = 1, the material balance for any plate of the column at
pseudo steady state yields

H D
Y, =y ¥ Ty

where D is the total amount of product removed from the condenser
at the end of the vapor-flow period with a composition xJ.

Substituting the above expression in Eq. (47) we have

et S
Eoi= G ¥ B) (Ve/H) =« = (D)=, (49)
Let us redefine b to be
by D (50)
Equation (49) then becomes
Eoi= (Tx—iﬁ_}?% (51)
Solving for x}, in the above equation, one has
iy =[1+Ey;(A—1)]xl + Eo:b
Assume i to be very large, or
Ey;=E;;+1=E,
and define ¥ to be
¥=14+E,\A—1) (52)
The above equation then becomes
x! =Wx!,+ E.b (53)

i—j
— i+ S VEDL  j<i
k=1
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1

= Pi-ixgl + T—v Eb (54)
or
-1
= Pi~ix} + 11_‘111,__ E.b (35)

The ith row of the matrix equation (22), when ¢ =1 and i # n, is

i
xf = Jinxl + xbe™
=
or
i
o= (= 3 vt + ) (56)
=1
Inserting x} and xf;,, Eq. (51) becomes

—et

i—1
=D Fb <2 Jirrxl — xf — ; Juxl + xi—l) (57)

Substituting for j; ; from Table 2 we have

E,=

E 1 i—1 )\I—j i )\1+1—J . oy y
"‘(A~1)x¥+b[,.=zl(z—)“ ZG+1=p! xﬁe("f-"‘f-l)}

In the above equation we did not use different forms for the ji;1,
and j;, as should be done, but when i is large the order of magni-
tude of these quantities is small enough to justify the approxima-
tion. By the same token, we may assume that Eq. (55) is valid for
all j and substitute it in the above expression to get

- 1 ()\/‘P %Y (7\/‘1’)'
Eo ()\—l)x-”'+b[ —Y) 2 T
— 1—i
-5 O gy M—‘I'q,—+ (xf - x,!'_,)ek]
p=1
As i becomes large, the above equation reduces to
I S A NSRRI
E, O—Dx +b [(1 —W¥)x¥ —E,b] (e 1) + ¥ Eo
This may be simplified again to
e_)‘ — e)\/\l»‘ (58)
v

For a given A = kVr/H, the above equation yields the asymptotic
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efficiency as i — . Actually, since \/¥ is always less than or equal
to 1, the above equation is a fairly good approximation for i = 4,
i.e., all the plates above and including the third plate.

It is interesting to note that Eq. (57) does not involve b defined
in Eq. (50); the plate efliciency is only a function of the stripping
factor. Hence one would expect that the derivation using an equi-
librium expression of the form y* = kx or at total reflux would give
the same result. Furthermore, apparently the efficiency of the ith
plate involves only three or four plate compositions beneath it (the
assumption that y* = kx + b is valid with a single k for all the plates
is, after all, not a bad approximation).

As was mentioned earlier, the derivation of the asymptotic efli-
ciency for cases where the point efliciency E is less than 1 may be
obtained in almost similar fashion. We have elected not to present
the detailed derivation but simply the final equation. It can be
shown that the plate efficiency satisfies the following equation, as
i approaches infinity, and ¢ = 1.

E2\ > eEA

exP(\I“rE-l v (59)

It can also be shown that when A = 1, i.e., parallel equilibrium and
operating lines, the above equation reduces to
2E

Ev=3—F (60)

Figures 6 and 7 give a plot of Eq. (59) in two different forms for
easy reference. Unlike Eq. (48), Eq. (59) is only valid for ¢ = 1.
To illustrate the correctness of Egs. (48) and (59), the following
is a comparison of the calculated efficiencies and the efficiencies
obtained from the solution of the matrix equation (Table 9):

i

2 3 4

E, from the matrix solution 1.6905 1.8810 1.8900
E, calculated using (48) or (59) 1.681 1.917 1.886

These calculated E,;'s were obtained with k;'s computed from the
arithmetic average of x} and x} (or \; if the column is not at total
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FIG. 6. Effective plate efficiency (E,) as a function of Murphree point
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FIG. 7. Ratio of effective plate efficiency (E,) to Murphree point efficiency
(E) as a function of the stripping factor ().
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reflux). Looking at these comparisons, they are seen to be in ex-

tremely good agreement, even though Eq. (59) is derived assuming
k,‘ = kj ‘cll'ld E().i = Eo,j.

COMPUTATIONAL METHOD FOR OBTAINING THE
THEORETICAL NUMBER OF STAGES

Having obtained the expressions for effective plate efficiencies
of a controlled cycling distillation column, an outline of the pro-
cedure for calculating the number of actual stages required for a
given separation will now be discussed. The idea of this procedure
is a natural extension of the Murphree efficiency concept. The effec-
tive plate efficiencies, E, /s, are calculated from the given local
stripping factor and instantaneous plate efficiency and then used
to construct pseudo equilibrium curves on a McCabe-Thiele dia-
gram. The remainder of the procedure is identical to that for con-
ventional design.

The major difference between the two, however, is that in con-
trolled cyclic distillation the effective plate efficiency also becomes
a function of the stage number. Hence, not one but two pseudo
equilibrium curves should be used. However, if the number of
stages in the column is large, say more than 10, one may assume
that all the stages have the same asymptotic efficiency and only
one pseudo equilibrium curve need be used. Methods employing
an over-all column efficiency can also be used, if the assumption
that all Ey; are the same is valid, i.e., for a large number of stages
in the column.

The procedure is as follows:

1. Construct a y*(x) curve and operating lines as in the conven-
tional case.

2. Construct y**(x) =g(x), where

H D
g(x) = I [‘I’x + (1—E,) V7l x,,] + E.b
in the rectification section and
H w
g(x)=-‘71~_[‘l’x— (l_Eo) ﬁx1]+E0b

in the stripping section. E, is defined by

efr — 1
A

E,=
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where E, A, and b are also functions of x. Here k(x) in the expres-
sion for A and b(x) are defined by

y*(x) =k(x)x+ b(x)

3. Construct y*** = g(x), except that E, is calculated from

E2)\

EN — —_—

e ¥ exp (‘I’ 1r E)

which is plotted in Fig. 7. The expression for g(x) is derived from

Eq. (49) and the material-balance equation for the appropriate
section (rectification or stripping) of the column; that is,

_H D
Y= VT Xiv1 + VT Xn

or

W
Yy Vr Xit+1 Vr 1

4. Follow the procedure of the conventional McCabe-Thiele
method, except that the first-stage vapor composition is obtained
from y*, the second-stage vapor composition from y**, and the rest
of the stage compositions from y***.

Figure 8 shows the modified McCabe-Thiele diagram for the

y‘*. y* i

ylit vunsans

75>

X X
X
FIG. 8. Design of a rectification still. Three trays are required for a
cycling column, whereas five trays are needed in a conventional column

(E = 100%).
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FIG. 9. Plot of the matrix solution on the McCabe-Thiele diagram.

design of a rectification column operating in controlled cyclic
fashion. Because of the fact that y*** now is a function of x, (or
x,) and X, any change in the operating conditions requires a new
calculation of y** and y***.

As an example of this method, we chose the problem previously
solved on the digital computer using the matrix method. Here at
total reflux the equation for y*** simplifies to

y*°® =Vx + Eoh

Because the operating line (total reflux) and the equilibrium curve
are almost parallel, the plate efliciency may be assumed to be 2, or
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¥ = 2\ — 1. The equilibrium curve is defined as

s — ax
Y T I+ (a—Dx
The approximate equation for y*** is
aos _ = _____2a - ]
y 2k —1)x + Eob [1+ TR 1=«

Figure 9 shows the curve defined above, where the compositions
of the stages are obtained from the result of the iterative-matrix
method. The agreement is good for the accuracy of a graphical
method. y** is not calculated here.
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