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SEPARATION SCIENCE, l ( 2  & 3), 281-317 (1966) 

Study of Controlled Cyclic Distillation: II. Analytical 
Transient Solution and Asymptotic Plate Efiiciencies 

HENRY H. CHIEN, JUDE T. SOMMERFELD, 

VERLE N. SCHRODT, and PAUL E. PARISOT 
MONSANTO COMPANY, ST. LOUIS, MISSOURI 

Summary 
The dynamic equations of the composition variables of a controlled cycling 
distillation column are solved to obtain the transient solutions for the vapor- 
flow period. These solutions are then used to establish asymptotic expres- 
sions for the compositions at the pseudo-steady-state condition of the 
cycling column. Analytical expressions for the asymptotic plate efficiencies 
in terms of the operating conditions, equilibrium data, and local point effi- 
ciencies are derived to show quantitatively the amount of improvement in 
the separating ability that can be achieved in an ideal cycling column. A 
method of numerical iterative solution for a nonlinear equilibrium relation- 
ship is demonstrated, and a simplified graphical method for calculating 
the number of stages required for a given separation is presented. 

In this paper the analytical expressions describing the dynamics 
of a distillation column operated in controlled cyclic fashion have 
been derived. Using this relationship, it is possible to predict the 
time history of the compositions at every plate, and furthermore to 
obtain the asymptotic pseudo-steady-state values of the composi- 
tions. The plate efficiencies of the pseudo-steady-state operation 
can then be calculated as a function of the local point efficiency, 
the equilibrium relationship, and the operating parameters. This 
efficiency information may then be used in the design of controlled 
cyclic distillation columns. 

Matrix notations are, in general, employed here to make the pres- 
entation more compact and the concept easier to follow for those 
who are used to matrix notations. 
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282 CHIEN, SOMMERFELD, SCHRODT, AND PARISOT 

DESCRIPTION OF THE METHOD 

Let the composition of the more volatile component of a binary 
system on the ith stage be denoted by xi. The condenser is the nth 
stage and the reboiler is the first stage. Boldface x is used to denote 
the composition vector. 

Let us first consider the vapor-flow period. At the beginning of 
this period, the composition vector has a value x(0). A transition 
matrix J(t) is defined which transforms the initial composition 
vector x(0) to its value at time t ,  x( t ) :  

x( t )  = J(t)x(O) (1) 

Equation (1) is equivalent to its component form: 
11 

xi(t> = Jtj(t)xj(O) 
.i= 1 

J is an n X n matrix and J(0) is an identity matrix. The form of J 
is discussed in the next section. At the end of the vapor-flow period, 
t = T, the composition vector will be 

xp= xP(7) = JP(7)x,(0) 

where the subscript p refers to the pth cycle. 
During the liquid-flow period, one again may describe the 

change of the state by a transition matrix, which shall be called 
the “drop matrix, D.” The drop matrix transforms the composition 
vector at the beginning of the liquid-flow period, x,V, to the compo- 
sition vector at the end of the period, xk; i.e., 

xb = Dxp (2) 
However, the compositions at the end of the liquid-flow period 

are just the compositions at the beginning of the next vapor-flow 
period. Using Eqs. (1) and (2), one obtains 

x,,~ (0) = X; = Dxp = DJ, (T)x, (0) (3) 
Using the recursion formula (3)  together with (l), the compo- 

sitions at any time can be calculated. As p becomes very large, Eq. 
(3 )  approaches 

xL = D JX“ (4) 
Here xL denotes the asymptotic pseudo-steady-state composition 

vector at the end of the liquid-flow period. The pseudo-steady- 
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CONTROLLED CYCLIC DISTILLATION: II. ANALYTICAL TRANSIENT SOLUTION 283 

state compositions at any time during the vapor-flow period can 
be obtained using Eq. (1). 

When the equilibrium relationship is nonlinear, the J matrix 
will be a function of x also: 

However, when the cycle time, 7, is not very large, x does not 
change very much during the vapor-flow period. One may use the 
average value of x or simply take x(0) in calculating J. The non- 
linear cases will be discussed in greater detail later. 

Equation (4) defines n equations for the n unknown composi- 
tions. The solution XI, is the characteristic vector of the matrix DJ 
with an eigenvalue of unity. Any multiple of the solution, xL,  is 
also a solution of Eq. (4). However, once one of the compositions 
is fixed, say xl, the rest of the compositions will all be determined. 

det [DJ - I] = 0 ( 5 )  

For Eq. (4) to yield a solution, it is necessary to have 

Condition (5) may be considered as the necessary condition for 
the cyclic distillation operation to have an asymptotic steady-state 
value. 

THE UNIQUENESS OF THE SOLUTION 

The reader will find in the next section that the matrix DJ is a 
so-called nonnegative matrix. Such matrices have important appli- 
cations in the theory of probability, Markov processes, etc. 

The theorem of Frobenius (1,2) ensures that a nonnegative matrix 
has a positive characteristic root which is also the maximum among 
all the roots. To that positive maximal root there corresponds a 
characteristic vector with positive entries. This is the existence 
theorem of a solution to Eq. (4). 

In (2), page 63 of Vol. 2, it is also shown that a nonnegative matrix 
cannot have two linearly independent nonnegative characteristic 
vectors. This is the uniqueness theorem of a solution to Eq. (4). 

DERIVATION OF THE TRANSITION MATRIX 

In our derivation we shall use the approach of immediately 
making simplifying assumptions and to provide the very specific 
derivation which hopefully will be easier to follow. Later these 
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284 CHIEN, SOMMERFELD, SCHRODT, AND PARISOT 

assumptions will be removed and the steps of the derivation for 
more general cases will either be given in greater detail or the 
possibility of derivation merely indicated. 

Consider the case where yp = kixi and the ki’s are constants; 
however, every plate has its own value of ki. 

The column during the vapor-flow period can be described b y  
the following differential equations: 

Reboiler: 

Condenser: 

Assume here that the local Murphree efficiencies for all of the 

V i = V f o r a l l i = l , .  . . , n - 1  
H i = H f o r a l l i = 2 , .  . , , n - 1  

stages are loo%, and assume further that 

Then 

after the dimensionless time, B = Vt/H, is introduced. 
The assumption that all Vi’s and all Hi’s are constant and iden- 

tical except HI and Hn is not at all necessary. Variations in the Vi’s 
can easily be absorbed in the ki’s and variations in Hi merely intro- 
duce multipliers to the off-diagonal terms of the J matrix. 

Consider the reboiler. Since HI = HY - Vt = HY - HB, then 

Therefore, combining Eqs. (9) and (12), one has 
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CONTROLLED CYCLIC DISTILLATION: II. ANALYTICAL TRANSIENT SOLUTION 285 

The solution to Eq. (13) is 

Usually, HP, the initial reboiler holdup, is very large in com- 
parison with the tray holdup, H .  The solution may then be ex- 
panded into a series. 

Now consider the plates. Let us define a vector 

to be the plate-composition vector. Then Eq. (10) may be written 

where the elements of the A matrix, aii, are 

a. =-k. ~ i . i - 1  = k, i =  1, . . . , n - 2  Z I  

All the other elements are zero. The b vector has 6, = klxl, hi = 0; 
i = 2 , .  . . , n - 2 .  

For n = 5, or a three-plate column, Eq. (16) is 

0 

-$ [ ii] = [-3: -k, I: ][ + [I‘] (17) 
k3 -k, 

One may solve Eq. (16) by the Laplace transform method. Let 

i(p) = L[X(B)] and b’ L[b] 
Equation (16) then becomes, after transformation, 

p z  - X(0) = xi + b’ 
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286 CHIEN, SOMMERFELD, SCHRODT, AND PARISOT 

or 

Again, take (17) as an example: 

z = (PI - A)-"?(O) + bq (18) 

: I  [;I%] + L";j (19) 

( P + k J ( P + k )  0 
k 2 ( P  + k,) ( P  + k,) ( P  + k )  

kk:3 k , ( ~  + k , )  (13 + h) [:;I = & [ 
where 

After inverting Eq. (18) and using Eq. (15), the solution is in the 
form 

det = ( P  + k,) ( P  + k3) ( P  + k, )  

i 

X i ( 0 )  =Zj,,x,(O) i = 2 ,  . . . , n 
1=1 

The general form ofjij is shown in Table 1. 
TABLE 1 

J Matrix for y: = kix,  

jl,,, = 0 for all m > 1 

I I 

Note: n, (k, - kj) = n ( k i  - kj) 
i = rid i = m  
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CONTROLLED CYCLIC DISTILLATION: II. ANALYTICAL TRANSIENT SOLUTION 287 

TABLE 2 
J Matrix for ki  = k i  = k 

j , ,  = 1 + P O ,  j,, = e-kH; 1 = 2 , . . . , n - I  

&'ne-ko; 1 = 2, . . . , n - 1; n i  = 2, . . . , 1 - 1 
1 

(Z-m)!  
j,,,, = ki-"' ~ 

For an infinite reboiler, P = 0, and using t h e  formula 

we have 

Consider the condenser: 

H,x,  = H,Ox,O + H krt-lxn-l  (A) dA Lo R 

= H : x 4 + H f 0  knp1 ( Y j n - , , ! ( k ) x ) ' )  1=1 dh (20) 

Table 2 gives the J matrix when all the ki's are equal. Table 3 shows 
the J matrix when the Vi's and Hi's are not equal. The derivation 
of these cases will not be shown, because it involves only minor 
changes from the derivation of the J iiiatrix of Table 1. It is to be 
remembered that, except for H ,  arid H,,, all Hi's  are assumed to be 
constant here during the vapor-flbw period. 

Consider the case where yp = k,xi + bi. We have always assumed 
the ki's are constants during one cycle. Although the k,'s are allowed 
to differ from plate to plate, it is still better to use yp = kfxi + bi as 
the equilibrium relationship for obvious reasons. Using such a rela- 
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288 CHIEN, SOMMERFELD, SCHRODT, AND PARISOT 

TABLE 3 
J Matrix for H i  f H ,  # H ,  V i  # V j  

V t  

H: 
j , ,  = 1 + ( 1  - k , )  = 1 + pat. j , ,  = exI>(-q,t) 

I 

Note: p" has dimensions of (l / t ime) 

tionship, ki actually approximates the local slope of the equilibrium 
line. Later, when we demonstrate the nonlinear cases, it will be 
shown that this approximation converges faster in the iterations. 
The accuracy is also better and the range of cycle times can also 
be larger. 

Equations (6), (7) ,  and (8) still apply. The solution (1) becomes 

Equation (4) then becomes 

or 

Here, because of the nonhoinogeneity of the equations, the solu- 
tion is no longer a characteristic root. To establish the existence 
and uniqueness of a positive solution is very difficult. We shall 
simply assume that a positive solution exists. Although Eq. (23) is 
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CONTROLLED CYCLIC DISTILLATION: II. ANALYTICAL TRANSIENT SOLUTION 289 

quite different from Eq. (4), the J and D matrices are still the same. 
The reader must realize that the numerical values of the ki's used 
in J are different from those of the previous case. We shall define 
M and p below. 

The equation for the reboiler is 

H i  dx, 
- (1  - kl)x l  - b, H de 

the solution to which is 
ki-1 

1 - k, 

= ( x : - = ) [ l - ( k , - l ) -  bl +- b, ",] 1 - k, 

= X P ( ~  + pel 
For the plates Eq. (16)  becomes 

d -  
- x = A%+ b + f l  do 

where 

For n = 5, or a three-plate column, the equation is 

Equation (18) then becomes 
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290 CHIEN, SOMMERFELD, SCHRODT, AND PARISOT 

The general forms of M and P are given in Table 4. 
For the condenser, 

H p ,  = H loe ( / c ~ - ~ x ~ - ,  + bt,-l)  dx + H:x: 

The reader may have noted that, except for the first column, 

rnl, = I,"jlm dT for rn # 1 

By redefining the quantity P in Eq. (25), it is possible to make 

But it turns out that the resulting expression is much more coinpli- 
cated. 

Given the J and M matrices, the compositions of the liquid on 
every stage at any time during the vapor-flow period are completely 
defined. The assumption that the ki's and bi's are constants (but 
not necessarily equal) is valid as long as the time T is not very large, 
i.e., the compositions do not change drastically. 

In the following section the transition matrix D for the liquid- 
flow period is derived. 

TABLE 4 
General Forms of the M Matrix and p Vector 

MI, =o;  1 = 1, . . . , n 

HH 
M," = - 

Hn 
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CONTROLLED CYCLIC DISTILLATION: II. ANALYTICAL TRANSIENT SOLUTION 291 

THE D DROP MATRIX 

Having derived the J and M matrices, we need only to find D to 
solve Eq. (4) [or Eq. (23) for y" = kx + b] .  Unlike matrix J, which is 
a function of time, we shall only attempt to relate the composition 
vector at the end of the liquid-flow period to the composition vector 
at the beginning of the liquid-flow period. It is assumed that no 
mass transfer occurs during the liquid-flow period, so the D matrix 
can be obtained simply by considering the plate-to-plate material 
balance at the end of the liquid-flow period. Let us define 4 to be 
the fraction of the equivalent tray holdup dropped during the 
liquid-flow period from the condenser. We shall again, for sim- 
plicity, assume that all tray holdups are equal. 

The matrix D is defined by 

We shall demonstrate the case when 0 < 4 < 1; the general form 
of D may be found in Table 5. 

TABLE 5 
General Form of the D Matrix 

F N  = [41 

HI D -  
" - H I  + F N ( H )  

H 
D -  . 1 = 2 ,  

" - H I  + F N ( H ) '  
, F N +  1 

D .  ,,n = l . i = n - F N , .  > . . , n  
All others are zero. 

N o t e :  [4] i s  the largest integer less than or equal to 4 
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292 CHIEN, SOMMERFELD, SCHRODT, AND PARISOT 

Again it is to be emphasized that the assumption of identical tray 
holdups is not at all necessary. However, if they are not all the 
same, another set of total material-balance equations must be 
solved for all the rbi's, being the fraction of the ith tray holdup 
dropped to the (i - 1)th tray. 

EXAMPLE 

In this section a sample calculation will be given for a three-tray 
rectification still. The still-pot size is assumed to be infinite, and 
all ki's are assumed to be equal. 

Using Table 2 the J matrix is as follows: 

J =  

1 
1 - e-kO 

1 - e-"(kO + 1) 

0 

kOe+ 
e-kB 

0 
0 

e-ke 

k&-kO 
H 
- [l - e-+O(kO + l)] HS 

O l  0 
0 
0 

O I  0 
0 

e-kO 

For 0 s 4 G 1, the D matrix is 

1 0  0 0 0  

D=[O 0 1 - 4  0 1-4  4 4 0 :] (30) 
0 0 0 1-4  4 
0 0  0 0 1  

Let 4 = 1 and using yo = kx as the equilibrium relationship, Eq. 
(4) becomes 
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CONTROLLED CYCLIC DISTILLATION: II. ANALYTICAL TRANSIENT SOLUTION 293 

X‘ 
2 1 - e-A(A + 1) - - e-A A2 

2 
- e - h  

0 0 0 
ecA 0 0 

Ae-A - 1 e-A 0 
H H - H :  

HS 
- [ l -e - ’ (A+ l ) ]  - ( 1 -  - A  - 1 HS HS 
H - [l - e-’(A + l ) ]  
H5 HS H5 

e )  

H -- Hg 1 - (1 - ecA) 

The solution for total reflux after simplification may be written 

xk = [eA(A - 1) + l]x, 
xk = [eA(eA - A )  ( A  - 1) + l]x, 

xi = [e* (ezh + 5 A2 - 2 ~ e ~ )  (A - 1)  + 1 j (32) 

xL - L 
5 - x4 

where A = k ( V r / H ) .  For total reflux 

Vr = +H (33) 

and since + = 1 in this case, the A’s in Eq. (32) are equal to k’s .  
When the column is operated at finite reflux with feed to the still 
pot, or 

then Eq. (32) is no longer valid; the correct solution will be shown 
in a later section. 
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294 CHIEN, SOMMERFELD, SCHRODT, AND PARISOT 

Since 4 = 1, this implies that 

xp = x i  
x t  = x; 
x: = x i  = xk 

The last relation shows that the condenser composition at the be- 
ginning of the vapor-flow period is the same as at the end of the 
vapor-flow period. This is one of the characteristics of a pseudo- 
steady-state oper 'i t' ion. 

The composition x[ may be calculated in the following way: 

x: = C jZ ,n ,~i ; l  = (1 - e-"xl + e-"ek((k - 1) + llx, = kx, 
1 

m= I 

It  is rather interesting to observe that the composition ofthe first 
plate above the still pot at the end of the vapor-flow period is the 
same as the composition obtained in the conventional column. This 
is equivalent to stating that the still-pot efficiency in a cycling col- 
umn is identical to that for the still pot of a conventionally operated 
column. We shall explore the significance of theoretical efficiencies 
further in a later section. The derivation of XI, for columns of larger 
size or for a more general situation (e.g., ki's are not identical) is 
quite straightforward, although the algebraic manipulations to sim- 
plify the final form of the solution become rather involved. It is 
easier to use Eq. (4) as it is and solve the matrix equation with the 
numerical values of the constants insxted. As the size of the matrix 
gets larger, the problem may have to be solved on a computer. 

When 4 = 1 in a cycling column operated at total reflux, Eq. 
(32)  not only applies for the three-plate column, but is valid regard- 
less of the total number of plates in the column. In fact, for 0 < 4 
< 1 at total reflux operation, the compositions of any plate can be 
shown to be independent of the total number of plates in the col- 
umn. An explanation of this phenomenon is discussed in another 
paper. 

THE TRANSITION MATRIX WHEN THE LOCAL PLATE 
EFFICIENCY IS NOT UNITY 

In all the preceding sections the local Murphree (or point) effi- 
ciency has always been assumed to be equal to unity. The purpose 
of such an assumption was to simplify the algebra and to concen- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
5
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



CONTROLLED CYCLIC DISTILLATION: II. ANALYTICAL TRANSIENT SOLUTION 295 

trate on the concept of the approach. It certainly would be very 
limited in application if this assumption could not be relaxed. The 
derivation of the J matrix becomes very long, tedious, and almost 
intractable. I t  was quite a surprise when the result turned out to 
be so compact. The reason for all the complexity in derivation is 
that now the rate of change of the composition of the ith plate de- 
pends not only on y i  and y i P l ,  but also on all y tn ,  rn = 1,  . . , , i .  

In the following, only the differential equations of the tray com- 
position variables are presented. The solution of the differential 
equation again is listed in a table. 

Assume first that all the plates have the same point efficiency E 
and that the still pot has an efficiency of unity. The point efficiency 
E is defined as usual to be 

Yi - Yi-1 E =  
Y? - Yi-1 

(34) 

which, after rearranging, gives 

We shall consider the equations of the plates, since the equations 
for the still pot and the condenser are the same as before: 

-_ dxZ - y1 - yZ = klx l  - Ekzxz - (1 - E ) k , x ,  
de 

dx, - 
de 

= -EkZx, + Eksxl  

- - - E k 3 ~ 3  + E2kzx2 + E ( 1  - E)k1x1 (37 1 
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' - 1  

{ k i x i [ ( l  - E ) ' - l - i -  ( 1  - E ) ' + ] }  - k , s )  d0 
+ (1  - E)'-'kIXIE (37) 

Equation (16) is 

where A and b are given by 

I +  1 a.. = -Ek  
uij = (1  - E)i-'-1E2kj+l 
bi= E k l x l ( l  - E ) i - l  

for all j < i; i = 2, . . . , n - 2 (38) 

In their full forin, 

A =  

0 
0 

0 . . .  
0 . . .  

( 1  - E)E2kz  EZk, -Ek4 0 9 - * 

-Ekz 0 0 
E2k,  -Ek ,  0 

. . .  -Ek,-I ( 1  - E)'1-4E2kz ( 1  - E)n-sE2k,  . . .  

Note again that A is a (n  - 2) X (n  - 2) matrix and that X is the com- 
position vector of the trays, the total of which is n - 2. 

The transition matrix J(0) of the vapor cycle may be obtained 
from the solution of the above differential equations; it is shown 
in Table 4. 

It is to be noted that the definition o f j , ,  is 
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1-1 

@,k,B n [Eiki + (1 - Ei)Ejkj] 
(39) i=m+l 2 fi,  (E ik i -  E I ~ I )  

j i m  = E i E m k m  
I=m 

i=m 

for a system where the individual Murphree efficiencies of each 
plate are not the same. The above solution is obtained simply by 
carrying the subscript i for the E's in the derivation. The rest of 
the terms of the J matrix may be obtained in similar fashion. 

We did not include a table for the J matrix with unequal El's, 
because the individual Ei's are rarely known. However, it is to be 
pointed out that the assumption of equal E's for the derivation of 
J (Table 6) is not necessary. 

When k j  = kj  = k the j lnl  assumes the form 
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NONLINEAR EQUILIBRIUM RELATIONSHIP 

There is a point reached at which derivation of analytical rela- 
tionships become completely intractable or impossible. A change 
in philosophy of investigation is clearly indicated. This point is 
reached for controlled cycling when one attempts to handle non- 
linear equilibrium relationships. When the equilibrium relation- 
ship is nonlinear, the k, in y: = kix,  (or y: = kixi + bi) is a function 
of xi. For example, in the case of a constant relative volatility, 

a 
X yn = 1 + ( a  - l ) X i  

or 

Although the assuniption that k, remains constant during the vapor- 
flow period is still a good approximation, to estimate the correct 
ki’s in J in the solution at the pseudo-steady-state compositions no 
doubt requires an iterative procedure. Of course, one could also 
use the very basic recursion equation (3), in which ki’s may be cal- 
culated using the initial value of x at the beginning of the vapor- 
flow period, and recalculate the ki’s at every new cycle until pseudo 
steady state has been reached. The number of cycles or, equiva- 
lently, the number of times a new J matrix has to be evaluated will 
depend upon the initial composition vector and the total number 
of plates in the column. Usually the iterative method using the 
asymptotic equation (4) is more efficient, in spite ofthe fact that the 
recursion formula does not require iteration, provided, of course, 
the iterative procedure converges. 

The iterative procedure is first to guess a set of ki’s and to calcu- 
late the composition vector. Next a new set of kjs are computed 
using the composition vector just obtained, and a new composition 
vector is calculated. The same procedure is repeated until the com- 
positions do not change. 

A digital program was written to solve iteratively Eq. (4) [or Eq. 
(23) in cases where y: = k,xi + bi is assumed] on an IBM 704 for a 
nonlinear equilibrium relationship. In the early stages of the work 
it was found that the iteration diverges when the size of the x is 
greater than 5. It was determined later that the trouble results from 
the roundoff error, a problem that must be quite familiar to all 
digital-computer users. 
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The difficulty was traced back to two terms. 

i=m 

Since ki is not much different from kj, the product of the differences 
soon becomes very very small when 1 - m is large; e.g., when 1 - m 
is 4 and ki - kj is about the product is about 10-lo. 

I e-hy 

2' J=m n n, (kj- kj) 
Since kj is not much different from kj+l, all the e+je have about the 
same magnitude. The terms under the summation have both posi- 
tive and negative values, which, together with the reason men- 
tioned in 1, causes very serious roundoff errors when n > 5. 

After a triple-precision arithmetic routine was used to compute 
1 e-i;,n 

i=m .x II, (ki- kj) 
the convergence of the iterative procedure was usually very fast. 
It required approximately 4 minute to obtain an iterative solution 
for an eight-plate column (or 10 x 10 matrix), although the total 
number of iterations obviously depends upon the initial ki's 
guessed. Since 4 = 1 is of the greatest interest (it will be shown 
later to be the most efficient mode of controlled cyclic operation), 
the following cases are cited as examples of the total number of 
iterations required for an accuracy of lops in the compositions. The 
initial ki's are computed using compositions corresponding to con- 
ventional column operation. Total reflux is assumed (4 = VT/H) and 
a constant relative volatility of a = 1.2 is used. kts are computed 
using the average composition of xy and x4 as the base composition, 

TABLE 7 
Total Number of Iterations 

5 8 3 
6 9 
7 10 4 

10 13 4 
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Table 7. When yp = kixi + bi is used, we choose 

k i =  (w) = a 
dx i [ 1 +  ( a -  l ) x f ]  

a(a  - 1)x f  
[ 1 +  ( a  - 1)xJZ 

b.  = (43) 

As the value of 4 becomes greater than unity, the solution oscil- 
lates very badly when using the first form for equilibrium relation- 
ships. The total number of iterations goes up to 30 or even 40. 
However, when using the second relationship (up = k,xi  + bi) the 
solution converges very rapidly (three or four iterations), although 
the program must compute the M matrix in addition to the original 
J matrix. The advantage of using the second relationship when 4 
is large is obvious, since ki is apt to be more nearly constant as the 
composition changes during the vapor-flow period are considerably 
larger. Tables 8 and 9 each contain a typical solution for a three- 
plate column using methods 1 and 2, respectively. Figure 1 shows 
the compositions a s  a function of 4. 

When 0 G 4 s 1, and the column is operating at total reflux, the 

I I I I I I 

- 
x 

0.7 - - 

8 Plate Colum 
x i -  0.5 - y* - k.x. 0.6 - I I 1  
* ....... y..-kx I ii'bi 

I I I I I I 
0 1 2 3 4 5 6 7 

4 

0.5 

FIG. 1. XI;) and XC as a function of fraction of a plate holdup dropped (4). 
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TABLE 8 
Typical Entries for a Three-Plate Column (yp = k l x l ,  CY = 1.2, 4 = 1.0) 

J Matrix 
1 0 0 0 0 
0.66849 0.34134 0 0 0 
0.29740 0.36955 0.34630 0 0 
0.09565 0.19732 0.36977 0.35109 0 
0.00294 0.00918 0.02839 0.06489 0.9 

Solution 
xf 0.5 0.61876 0.69707 0.76732 0.76732 
x! 0.5 0.54545 0.61876 0.69707 0.76732 

TABLE 9 
Typical Entries for a Three-Plate Column (yp = kix ,  + b,, CY = 1.2, 4 = 1.0) 

1 
0.63687 
0.26011 
0.07505 
0.00197 

0 
0 
0 
0 
0 

xk 0.5 
xy 0.5 

J Matrix 
0 0 
0.38198 0 
0.37244 0.39207 
0.17654 0.37155 
0.00690 0.02364 

0 0 
0.64218 0 
0.26228 0.64928 
0.07568 0.25912 
0.00199 0.00916 

0.62104 0.69979 
0.54545 0.62104 

M Mutrix 

Solution 

0 
0 
0 
0.04162 
0.05984 

0 
0 
0 
0.65594 
0.03441 

0.76945 
0.69979 

0 
0 
0 
0 
0.9 

0 
0 
0 
0 
0.1 

0.76945 
0.76945 

compositions x i  are not a function of the total number of plates in 
the column. Figure 2 shows the relation between xi and 4. Here a 
is again chosen to be 1.2 and an infinite still pot and total reflux 
have been assumed. 

At total reflux one may define the effective plate efficiency in the 
following way: 

Since 
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XI - 0.5 1 a - 1.2 

0 
0.5 

4 

FIG. 2. Coinpositions xl' as i i  function o f  Jraction of a plate holdup 
dropped (4). 
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4- 1.0 

4- 0.8 

- 
4-  0.6 

4- 0.4 

I I I I I 

and 4 = Vr/H for total reflux, we have 

Figure 3 shows the E ,  versus plate number using 4 as a param- 
eter. Since 4 c 1 in  this plot, the E ,  is not a function of the total 
number of plates in the column (which follows from the conclusion 
regarding the independence of compositions on the number of 
plates for 4 c 1). However, as becomes greater tlian 1, Eq. (46) 
is no longer true, even at total reflux. We have plotted E ,  versus 
4 (1 c 4 =s 3) in Fig. 4, where E, is defined by Eq. (44). Since yi-la, 
can be greater than ~f (T) for large 4,  the efficiencies ofthe second 
and third plates have singular points at which E,,,, and E,,4 jump 
from +m to --co. E0,2, or the efficiency of the first plate, does not ex- 
hibit such behavior, because y; (T) is always greater than y,, which 
is assumed to be a constant. Figure 5 is rather misleading, because 
it shows that the efficiency for a given plate increases very rapidly 
with 4 (for 4 greater than 1 but less than that value corresponding 
to the point at which the efficiency becomes negative); yet the 
composition x:" decreases as 4 exceeds unity. Actually, x5.,, the 
average over the whole vapor-flow period, indeed increases when 
4 increases; nevertheless, it is the XF which is more significant to 
the separation achieved. Therefore, it is more realistic and inform- 
ative to plot E ,  versus + using Eq. (46) as the definition of E,. 

This is to extend the definition of E,  for 0 s 4 s 1 to all 4 2 0; 
the plot is shown in Fig. 5. 

As 4 increases above unity, as shown in Fig. 4 for a three-plate 

ZTQ 
0 w 

--- I I I I I I I I 

Plate Number (Including Pot) 
FIG. 3. Effective plate efficiency (E, , )  as a function of plate number; a = 1.2. 
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10 I 

- 

Singular Poln17 
for Plate 3 

- 10 
1 

/ 

Slnpllar P o i n h  2 far Plab 2 9 2 

I 

FIG. 4. Effective plate efficiency (E,) as a function of fraction of a plate 
holdup dropped (4). 
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250 

2al 

150 

aQ 

W" 

1w 

50 

3 Plate Column 

0 

4 
FIG. 5. Difficulty in the definition of Eo when 4 > 1. 

column, the top plate efficiency also increases. However, the over- - 
.. . 

all column or efficiency decreases, because all the other plate effi- 
ciencies drop significantly. These phenomena will also be ex- 
plained in another paper. 

CONTINUOUS OPERATION 

Most of the examples shown in the preceding sections have 
assumed total reflux to simplify the computation. We are to demon- 
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strate in the following the applicability of this matrix method to 
cases where one does not have total reflux Vr > r$H. 

Now the compositions in the column become a function of the 
total number of stages. For example, Eq. (32) ,  which is valid for 
any size of the column at total reflux, now changes to the following 
set of equations: 

One-plate column: 

Two plates: 

e-”A - -8) [ e-2A - ( l - O ) ( l - A e - A )  

(1  - AePA) ( A  - 19) 
xi = e-2 [ ( l - -8 ) ( l -Ae-A)  - 

Three plates: 

+ 11 x1 
ewzA ( A  - 0) 

( l - 0 ) [ ( l - A e - - A ) 2 -  (A2/2)e-2A] 

e-2A( 1 - Ae-A) ( A  - 0) 

x i  = 

xi = - [ e-3A - (1  - 0) [ (1  - Ae-A)2 - (A2/2)e-2A 

+ 11 x1 
[ (1  - he-’)’ - (A2/2)] ( A  - 0) 

xi = [e-3A- (1-O)[(1-Ae-A)2- ( A ’ / ~ ) c ~ ~ ]  

b, is assumed to be unity in all these derivations; hence 

x y = X k l  i > 2 

x:’ can be recovered from 

x:’ = (1 - e-”x, + e-%; 

Equations for the efficiencies which may be derived without the 
assumption of total reflux will remain the same. Nonlinear con- 
tinuous cases have also been tested on the IBM 704. The results 
indicate that the matrix-iterative method, as described in detail 
previously, works as well for the continuous cases. However, 
roundoff error becomes more serious, especially if the total number 
of trays is large. The reasons are not only those mentioned before, 
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but also because of the fact that when the total number of plates 
increases, the differences between the lower plate compositions 
(or equivalently the ki’s) get smaller and smaller. 

Table 10 contains the results of a three-plate column with a = 1.2 
and Table 11 gives the results of an eight-plate column. 

TABLE 10 
Continuous Operation 

(n = 5; (Y = 1.2; X, = 0.5; I#J = 1.0) 

1.1 1 
2 
3 
4 
5 

1.5 1 
2 
3 
4 
5 

2.0 1 
2 
3 
4 
5 

0.5 
0.5813 
0.6495 
0.7244 
0.7244 
0.5 
0.5177 
0.5515 
0.6284 
0.6284 
0.5 
0.5035 
0.5186 
0.5904 
0.5904 

0.5 
0.5275 
0.5813 
0.6495 
0.7244 
0.5 
0.5040 
0.5177 
0.5515 
0.6284 
0.5 
0.5005 
0.5035 
0.5186 
0.5904 

1.0 
1.798 
2.026 
2.034 

1.0 
2.300 
2.696 
2.708 

1.0 
3.160 
3.816 
3.844 

0.9917 
0.9724 
0.9514 
0.9276 

0.9917 
0.9878 
0.9794 
0.9601 

0.9917 
0.9910 
0.9878 
0.9724 

TABLE 11 
Continuous Operation 

(n = 10; (Y = 1.2; x, = 0.5; VT/H = 1.1, I#J = 1.0) 

1 0.5 0.5 1.0 0.9917 
2 0.5417 0.5141 1.805 0.9818 
3 0.5775 0.5417 2.050 0.9706 
4 0.6189 0.5775 2.074 0.9572 
5 0.6644 0.6189 2.057 0.9426 
6 0.7128 0.6644 2.034 0.9271 
7 0.7625 0.7128 2.010 0.9113 
8 0.8120 0.7625 1.987 0.8957 
9 0.8594 0.8120 1.965 0.8809 

10 0.8594 0.8594 
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THEORETICAL PLATE EFFICIENCY OF A CONTROLLED 
CYCLIC DISTILLATION COLUMN 

Having derived expressions for pseudo-steady-state composi- 
tions in controlled cyclic distillation, we shall attempt to calculate 
individual plate efficiencies, which are defined by 

The efficiency of the first plate, E0,2, when the still pot is infinite 
in size, is very easy to derive. In  fact, one does not need to know 
exactly the expression for the composition of the first plate. As de- 
fined earlier, 

Y2 = EYZ" + ( 1  - E)YI 
Y2" = k 2 X 2  = k,(j21x? + j Z Z X ! >  

Substituting for j , ,  and j , ,  from Table 6,  one has 

y? = k ,  (1 - e-E'kzo)xl + k,e-Ek%!j 

The average value of y2 is 

yZ" ( r )  = (k,x! - klxl) cEh + klx l  

Recognizing that y1 = klxl, one has 
- 1 

Eo = - 
A2 

where 

Note that the derivation does not involve 4; hence Eq. (48) is valid 
for any 4. This is due to the fact that y1 is assumed constant regard- 
less of the value of 4. All the other plates do not have this property, 
because t ~ + ~ ~ > , ( i  > 2) is strongly dependent upon the value of 4. 

The same method may be used sequentially to obtain the effi- 
ciencies for the other plates of the column, but the procedure so011 
becomes too complicated. However, as the plate number increases 
the efficiency rapidly approaches some asymptotic value, which is 
a function of the various operating parameters of the column. We 
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shall first derive the expression for the asymptotic efficiency, as- 
suming + to be unity and the local (or point) efficiency to be loo%, 
to demonstrate the method. Cases wherein + is not unity and E 
is not 100% will be derived later. 

Let us assume the following: 

1. y* = kx + b for all x1 s x 6 x,. 
2. + = 1. 
3. E = 1. 

Since + = 1, the material balance for any plate of the column at 
pseudo steady state yields 

H D 
TV y i - c  = xy + - x," 

where D is the total amount of product removed from the condenser 
at the end of the vapor-flow period with a composition x,". 

Substituting the above expression in Eq. (47) we have 

xY - v 
1+1 xi 

E o , i =  (kxj+ b ) ( V T / H )  -xy- (D/H)xH 

Let us redefine b to be 

Equation (49) then becomes 

Solving for xR1 in the above equation, one has 

x;+1 = [I + Eo,i(h - l ) ] ~ ;  -t Eo,ib 

Assume i to be very large, or 

E o , ~  = = EO 
and define ? to be 

'4 = 1 + Eo(X - 1) 
The above equation then becomes 

xr = Wxiv_, + Eob  

(52)  

(53) 
i - i  
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or 

The ith row of the matrix equation (22), when 4 = 1 and i # n, is 

Inserting x/ and xR,, Eq. (51) becomes 

Substituting forjiPj from Table 2 we have 
hi+’-] i: 1 

j = ,  (i + 1 - j )  ! Eo = 

In the above equation we did not use different forms for the j i + , , l  
andj,, ,  as should be done, but when i is large the order of magni- 
tude of these quantities is small enough to justify the approxima- 
tion. By the same token, we may assume that Eq. (55) is valid for 
all j and substitute it in the above expression to get 

As i becomes large, the above equation reduces to 

eA 
V [(l - T ) x y  - E,)b] (eAiy - 1) + - E ,  1 

(A- 1 ) ~ :  + b 
E, = 

This may be simplified again to 

eA _ -  * - eh’y 

For a given A = kVr/H, the above equation yields the asymptotic 
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efficiency as i + co. Actually, since AIW is always less than or equal 
to 1, the above equation is a fairly good approximation for i 2 4, 
i.e., all the plates above and including the third plate. 

It is interesting to note that Eq. (57) does not involve b defined 
in Eq. (50); the plate efficiency is only a function of the stripping 
factor. Hence one would expect that the derivation using an equi- 
librium expression of the form yo = kx or at total reflux would give 
the same result. Furthermore, apparently the efficiency of the ith 
plate involves only three or four plate compositions beneath it (the 
assumption that yo = kx + b is valid with a single k for all the plates 
is, after all, not a bad approximation). 

As was mentioned earlier, the derivation of the asymptotic effi- 
ciency for cases where the point efficiency E is less than 1 may be 
obtained in almost similar fashion. We have elected not to present 
the detailed derivation but simply the final equation. It can be 
shown that the plate efficiency satisfies the following equation, as 
i approaches infinity, and d, = 1. 

E2X 

exp (W + E - 1) = 1I' (59) 

It  can also be shown that when A = 1, i.e., parallel equilibrium and 
operating lines, the above equation reduces to 

2E 
E o = m  

Figures 6 and 7 give a plot of Eq. (59) in two different forms for 
easy reference. Unlike Eq. (48), Eq. (59) is only valid for d, = 1. 

To illustrate the correctness of Eqs. (48) and (59), the following 
is a comparison of the calculated efficiencies and the efficiencies 
obtained from the solution of the matrix equation (Table 9): 

i 

2 3 4 

Eo from the matrix solution 1.6905 1.8810 1.8900 
E,, calculated using (48) or (59) 1.681 1.917 1.886 

These calculated E,,i's were obtained with ki's computed from the 
arithmetic average of xi" and xf (or hi if the column is not at total 
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FIG. 6. Effective plate efficiency (E,)  as a function of Murphree point 
efficiency. 
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h 

FIG. 7. Ratio of effective plate efficiency (E,) to Murphree point efficiency 
(E) as a function of the stripping factor (A). 
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reflux). Looking at these comparisons, they are seen to be in ex- 
tremely good agreement, even though Eq. (59) is derived assuming 
ki = kj and E0.i = E0,j. 

COMPUTATIONAL METHOD FOR OBTAINING THE 
THEORETICAL NUMBER OF STAGES 

Having obtained the expressions for effective plate efficiencies 
of a controlled cycling distillation column, an outline of the pro- 
cedure for calculating the number of actual stages required for a 
given separation will now be discussed. The idea of this procedure 
is a natural extension of the Murphree efficiency concept. The effec- 
tive plate efficiencies, Eu,i's, are calculated from the given local 
stripping factor and instantaneous plate efficiency and then used 
to construct pseudo equilibrium curves on a McCabe-Tliiele dia- 
gram. The remainder of the procedure is identical to that for con- 
ve ntional design. 

The major difference between the two, however, is that in con- 
trolled cyclic distillation the effective plate efficiency also becomes 
a function of the stage number. Hence, not one but two pseudo 
equilibrium curves should be used. However, if the number of 
stages in the column is large, say more than 1 0 ,  one may assume 
that all the stages have the same asymptotic efficiency and only 
one pseudo equilibrium curve need be used. Methods employing 
an over-all column efficiency can also be used, if the assumption 
that all EoSi are the same is valid, i.e., for a large number of stages 
in the column. 

The procedure is a s  follows: 
1. Construct a ~ " ( x )  curve and operating lines as in the conven- 

2.  Construct y**(x) = g(x), where 
tional case. 

in the rectification section and 

in the stripping section. E ,  is defined by 
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where E ,  A, and b are also functions of x. Here k(x )  in the expres- 
sion for A and b(x) are defined by 

y*(x) = k ( x ) x  + b(x)  
3. Construct y"** = g(x), except that Eo is calculated from 

which is plotted in Fig. 7. The expression for g(x) is derived from 
Eq. (49) and the material-balance equation for the appropriate 
section (rectification or stripping) of the column; that is, 

or 

4. Follow the procedure of the conventional McCabe-Thiele 
method, except that the first-stage vapor composition is obtained 
from y*, the second-stage vapor composition from yo*, and the rest 
of the stage compositions from y***. 

Figure 8 shows the modified McCabe-Thiele diagram for the 

xs XC 
X 

FIG. 8. Design of a rectification still. Three trays are required for a 
cycling column, whereas five trays are needed in a conventional column 

( E  = 100%). 
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9 
X 

FIG. 9. Plot of the matrix solution on the McCabe-Thiele diagram. 

design of a rectification column operating in controlled cyclic 
fashion. Because of the fact that y o * *  now is a function of x, (or 
x,) and A,  any change in the operating conditions requires a new 
calculation of yo" and yo**.  

As an example of this method, we chose the problem previously 
solved on the digital computer using the matrix method. Here at 
total reflux the equation for y*** simplifies to 

y * * *  = 9 x  + E,b 

Because the operating line (total reflux) and the equilibrium curve 
are almost parallel, the plate efficiency may be assumed to be 2, or 
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1I' = 2h - 1. The equilibrium curve is defined as 

LYX 

= 1 + ( a  - 1)x 

The approximate equation for y***  is 

- 11 x [1+ ( a -  1)x 
2a 

y* * *  = (2k  - 1)x + E,b = 

Figure 9 shows the curve defined above, where the compositions 
of the stages are obtained from the result of the iterative-matrix 
method. The agreement is good for the accuracy of a graphical 
method. y** is not calculated here. 
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